Limits of sequences of pseudo-Anosov maps and of hyperbolic 3–manifolds

نویسندگان

چکیده

There are two objects naturally associated with a braid $\beta\in B_n$ of pseudo-Anosov type: (relative) homeomorphism $\varphi_\beta\colon S^2\to S^2$; and the finite volume complete hyperbolic structure on 3-manifold $M_\beta$ obtained by excising closure $\beta$, together its axis, from $S^3$. We show disconnect between these objects, exhibiting family braids $\{\beta_q:q\in{\mathbb{Q}}\cap(0,1/3]\}$ properties that: one hand, there is fixed $\varphi_0\colon S^2$ to which (suitably normalized) homeomorphisms $\varphi_{\beta_{q}}$ converge as $q\to 0$; while other infinitely many distinct 3-manifolds arise geometric limits form $\lim_{k\to\infty} M_{\beta_{q_k}}$, for sequences $q_k\to 0$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A family of pseudo-Anosov maps

We study a family of area-preserving maps of the 2-torus and show that they are pseudo-Anosov. We present a method to construct finite Markov partitions for this family which utilizes their common symmetries. Through these partitions we show explicitly that each map is a tower over a first return map, intimately linked to a toral automorphism. This enables us to calculate directly some dimensio...

متن کامل

Heegaard Splittings and Pseudo-anosov Maps

LetM andM− be oriented 3-dimensional handlebodies whose boundary is identified with an oriented surface S of genus g > 1 in such a way that the orientation of S agrees with the orientation of ∂M and does not with the one of ∂M−. Given a mapping class f ∈ MCG(S) we consider the closed, oriented 3-manifold Nf =M + ∪f M− obtained by identifying the boundaries of M and M− via f . In this note we st...

متن کامل

Extensions, Quotients and Generalized Pseudo-anosov Maps

We describe a circle of ideas relating the dynamics of 2-dimensional homeomorphisms to that of 1-dimensional endomorphisms. This is used to introduce a new class of maps generalizing that of Thurston’s pseudo-Anosov homeomorphisms.

متن کامل

Pseudo-Anosov extensions and degree one maps between hyperbolic surface bundles

Let F ′,F be any two closed orientable surfaces of genus g′ > g ≥ 1, and f : F → F be any pseudo-Anosov map. Then we can “extend” f to be a pseudoAnosov map f ′ : F ′ → F ′ so that there is a fiber preserving degree one map M(F ′, f ′) → M(F, f ) between the hyperbolic surface bundles. Moreover the extension f ′ can be chosen so that the surface bundlesM(F ′, f ′) andM(F, f ) have the same firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2021

ISSN: ['1472-2739', '1472-2747']

DOI: https://doi.org/10.2140/agt.2021.21.1351